Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 11, 2026
-
The Lake Tahoe Basin Stream Catchment Database: A resource for water quality monitoring in the basinAlthough the Lake Tahoe Basin and its receiving waterbody, Lake Tahoe, are intensively monitored, managed, and studied, there has been no centralized resource for evaluating variation in environmental characteristics among watersheds (i.e., catchments). To address this opportunity, we compiled and calculated 161 variables for 60 non-overlapping contiguous watersheds draining to Lake Tahoe . Watershed-scale variables include climatic, topographic, vegetation, edaphic, hydrologic, and anthropogenic characteristics. Data were downloaded from publicly-available sources including: the National Elevation Dataset, USDA SSURGO soils, Calfire FRAP dataset of fire perimeters, the National Land Cover Dataset, and the Rangeland Analysis Platform. We compiled data in a Geographic Information System at the scale of the watershed. Existing and custom scripts were used to process data and derive variables that could not be obtained from existing databases. These data will be useful for environmental managers and scientists who work in the Lake Tahoe Basin and can assist with future site selection intended to span environmental gradients.more » « less
-
The overarching goal of this project was to develop a process-based understanding of how watershed-to-lake connections drive nearshore productivity dynamics in a large oligotrophic mountain lake (Lake Tahoe). We addressed this goal through a combined approach of high-frequency sensor deployment and maintenance, ecosystem metabolism modeling, laboratory incubations, and routine monitoring of water chemistry and other parameters. The data we collected as part of this project and the ecosystem metabolism estimates we generated demonstrate how variable ecosystem productivity is in time and space in the nearshore of Lake Tahoe. Although maintenance of the sensor arrays during the exceptional winter of 2023 was challenging, we were able to capture the data necessary to estimate a complete time series of metabolic activity across two years with very different hydroclimatic conditions. Throughout this project we accomplished the following: 1. We generated over two years of daily estimates of ecosystem metabolism (gross primary productivity, ecosystem respiration, and net ecosystem productivity) from multiple locations on both the east and west shores of the lake and from areas in close proximity to and far away from stream water inflows. 2. We measured ammonium (NH4+) and nitrate (NO3-) concentrations in surface water samples from both Glenbrook and Blackwood creeks and the nearshore of Lake Tahoe for over two years. 3. We quantified rates of NH4+ and NO3- uptake in benthic samples of the dominant substrate type collected during peak streamflow, the receding limb, and baseflow conditions in 2023 from multiple locations in the nearshore using established laboratory incubation methods. 4. Finally, we used a combination of time series models and structural equation modeling to integrate our results and improve understanding of the direct and indirect effects of hydroclimatic variability on observed patterns in ecosystem metabolism in the nearshore. See this git code repository for project analysis: https://github.com/kellyloria/Tahoe-streamflow-and-nearshore-metabolism.more » « less
-
We collected this data to better understand the timing of peak benthic cyanobacterial mat occurrence (specifically taxa associated with anatoxin production, Microcoleus and Anabaena) and mat anatoxin concentrations in rivers. We sampled in northern California on the South Fork Eel, Salmon, and Russian Rivers biweekly in 2022, and the Salmon River biweekly and South Fork Eel weekly in 2023. During each sampling event, we conducted benthic cover surveys, measured in-situ water quality parameters (temperature, pH, dissolved oxygen, conductivity), and collected surface water samples and targeted cyanobacteria samples. In 2022 on all rivers and in 2023 at the Salmon River, we also collected distributed non-targeted periphyton samples to characterize full-reach community compositions. All sampling was completed in 150-m reaches upstream of sensors recording continuous dissolved oxygen, conductivity, and temperature data. We analyzed surface water samples for nitrate, ammonium, soluble reactive phosphate, total dissolved carbon, and dissolved organic carbon. We also analyzed surface water samples from 2022 for major anions (Cl, SO4, Br) and cations (Na, K, Mg, Ca). Targeted-cyanobacteria and non-target periphyton samples were analyzed for anatoxins, relative abundance of algal taxa (via microscopy), ash-free dry mass, and chlorophyll-a. To estimate mean river depth within the dissolved oxygen footprint upstream of sensors, we kayaked portions of the river and collected river depth measurements. We also measured discharge at each river excluding the Salmon River (due to high discharge) and completed pebble counts at the South Fork Eel River to obtain sediment grain size distributions.more » « less
-
Stream metabolism, encompassing gross primary production and ecosystem respiration, reflects the fundamental energetic dynamics of freshwater ecosystems. These processes regulate the concentrations of dissolved gases like oxygen and carbon dioxide, which in turn shape aquatic food webs and ecosystem responses to stressors such as floods, drought, and nutrient loading. Historically difficult to quantify, stream metabolism is now measurable at high temporal resolution thanks to advances in sensor technology and modeling. The StreamPULSE dataset includes high-frequency sensor data, metadata, and modeled estimates of ecosystem metabolism. This living dataset contributes to a growing body of open-access data characterizing the metabolic pulse of stream ecosystems worldwide. To contribute to StreamPULSE, visit data.streampulse.org. All data contributed to StreamPULSE become public after an optional embargo period. Use this publication to access annual data releases, or use data.streampulse.org to download new data as they become available.more » « less
-
Free, publicly-accessible full text available April 1, 2026
-
Abstract Wildfires have increased in size, frequency, and intensity in arid regions of the western United States because of human activity, changing land use, and rising temperature. Fire can degrade water quality, reshape aquatic habitat, and increase the risk of high discharge and erosion. Drawing from patterns in montane dry forest, chaparral, and desert ecosystems, we developed a conceptual framework describing how interactions and feedbacks among material accumulation, combustion of fuels, and hydrologic transport influence the effects of fire on streams. Accumulation and flammability of fuels shift in opposition along gradients of aridity, influencing the materials available for transport. Hydrologic transport of combustion products and materials accumulated after fire can propagate the effects of fire to unburned stream–riparian corridors, and episodic precipitation characteristic of arid lands can cause lags, spatial heterogeneity, and feedbacks in response. Resolving uncertainty in fire effects on arid catchments will require monitoring across hydroclimatic gradients and episodic precipitation.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Increased occurrence, size, and intensity of fire result in significant but variable changes to hydrology and material retention in watersheds with concomitant effects on stream biogeochemistry. In arid regions, seasonal and episodic precipitation results in intermittency in flows connecting watersheds to recipient streams that can delay the effects of fire on stream chemistry. We investigated how the spatial extent of fire within watersheds interacts with variability in amount and timing of precipitation to influence stream chemistry of three forested, montane watersheds in a monsoonal climate and four coastal, chaparral watersheds in a Mediterranean climate. We applied state-space models to estimate effects of precipitation, fire, and their interaction on stream chemistry up to five years following fire using 15 + years of monthly observations. Precipitation alone diluted specific conductance and flushed nitrate and phosphate to Mediterranean streams. Fire had positive and negative effects on specific conductance in both climates, whereas ammonium and nitrate concentrations increased following fire in Mediterranean streams. Fire and precipitation had positive interactive effects on specific conductance in monsoonal streams and on ammonium in Mediterranean streams. In most cases, the effects of fire and its interaction with precipitation persisted or were lagged 2–5 years. These results suggest that precipitation influences the timing and intensity of the effects of fire on stream solute dynamics in aridland watersheds, but these responses vary by climate, solute, and watershed characteristics. Time series models were applied to data from long-term monitoring that included observations before and after fire, yielding estimated effects of fire on aridland stream chemistry. This statistical approach captured effects of local-scale temporal variation, including delayed responses to fire, and may be used to reduce uncertainty in predicted responses of water quality under changing fire and precipitation regimes of arid lands.more » « less
An official website of the United States government
